5-5 Indirect Proof

Objective To use indirect reasoning to write proofs

It's okay to write a number in a square if you know it can't be any other number.

MATHEMATICAL PRACTICES

Lesson Vocabulary

- indirect reasoning
- indirect proof

In the Solve It, you can conclude that a square must contain a certain number if you can eliminate the other three numbers as possibilities. This type of reasoning is called indirect reasoning. In indirect reasoning, all possibilities are considered and then all but one are proved false. The remaining possibility must be true.

Essential Understanding You can use indirect reasoning as another method of proof.

A proof involving indirect reasoning is an indirect proof. Often in an indirect proof, a statement and its negation are the only possibilities. When you see that one of these possibilities leads to a conclusion that contradicts a fact you know to be true, you can eliminate that possibility. For this reason, indirect proof is sometimes called proofby contradiction.

Key Concept Writing an Indirect Proof

Step 1 State as a temporary assumption the opposite (negation) of what you want to prove.

Step 2 Show that this temporary assumption leads to a contradiction.
Step 3 Conclude that the temporary assumption must be false and that what you want to prove must be true.

In the first step of an indirect proof you assume as true the opposite of what you want to prove.

Problem 1 Writing the First Step of an Indirect Proof

Suppose you want to write an indirect proof of each statement. As the first step of the proof, what would you assume?
A An integer n is divisible by 5 .
The opposite of "is divisible by" is "is not divisible by." Assume temporarily that n is not divisible by 5 .

Think

How do you find the opposite of a statement? Write the negation of the statement. This often involves adding or removing the word not.

B You do not have soccer practice today.
The opposite of "do not have" is "do have."
Assume temporarily that you do have soccer practice today.
(Got It?

1. Suppose you want to write an indirect proof of each statement. As the first step of the proof, what would you assume?
a. $\triangle B O X$ is not acute.
b. At least one pair of shoes you bought cost more than $\$ 25$.

To write an indirect proof, you have to be able to identify a contradiction.

Think

How do you know that two statements contradict each other?
A statement contradicts another statement if it is impossible for both to be true at the same time.

Problem 2 Identifying Contradictions

Which two statements contradict each other?

I. $\overline{F G} \| \overline{K L}$
II. $\overline{F G} \cong \overline{K L}$
III. $\overline{F G} \perp \overline{K L}$

Segments can be parallel and congruent. Statements I and II do not contradict each other.

Segments can be congruent and perpendicular. Statements II and III do not contradict each other.

Parallel segments do not intersect, so they cannot be perpendicular.
Statements I and III contradict each other.

Got It? 2. a. Which two statements contradict each other?
I. $\triangle X Y Z$ is acute.
II. $\triangle X Y Z$ is scalene.
III. $\triangle X Y Z$ is equiangular.
b. Reasoning Statements I and II below contradict each other.

Statement III is the negation of Statement I. Are Statements II and III equivalent? Explain your reasoning.
I. $\triangle A B C$ is scalene.
II. $\triangle A B C$ is equilateral.
III. $\triangle A B C$ is not scalene.

Given: $\triangle A B C$ is scalene.
Prove: $\angle A, \angle B$, and $\angle C$ all have different measures.

Lesson Check

Do you know HOW?

Do you UNDERSTAND?

1. Suppose you want to write an indirect proof of the following statement. As the first step of the proof, what would you assume?

Quadrilateral $A B C D$ has four right angles.
2. Write a statement that contradicts the following statement. Draw a diagram to support your answer. Lines a and b are parallel.
3. Error Analysis A classmate began an indirect proof as shown below. Explain and correct your classmate's error.

Given: $\triangle A B C$

Prove: $\angle A$ is obtuse.
Assume temporarily that $\angle A$ is acute.

Practice and Problem-Solving Exercises

Write the first step of an indirect proof of the given statement.
4. It is raining outside.
5. $\angle J$ is not a right angle.
6. $\triangle P E N$ is isosceles.
7. At least one angle is obtuse.
8. $\overline{X Y} \cong \overline{A B}$
9. $m \angle 2>90$
10. I. $\triangle P Q R$ is equilateral.
II. $\triangle P Q R$ is a right triangle.
III. $\triangle P Q R$ is isosceles.
12. I. Each of the two items that Val bought costs more than \$10.
II. Val spent $\$ 34$ for the two items.
III. Neither of the two items that Val bought costs more than $\$ 15$.
11. I. $\ell \| m$
II. ℓ and m do not intersect.
III. ℓ and m are skew.
13. I. In right $\triangle A B C, m \angle A=60$.
II. In right $\triangle A B C, \angle A \cong \angle C$.
III. In right $\triangle A B C, m \angle B=90$.
14. Developing Proof Fill in the blanks to prove the following statement.

If the Yoga Club and Go Green Club together have fewer than 20 members and the Go Green Club has 10 members, then the Yoga Club has fewer than 10 members.
Given: The total membership of the Yoga Club and the Go Green Club is fewer than 20. The Go Green Club has 10 members.
Prove: The Yoga Club has fewer than 10 members.
Proof: Assume temporarily that the Yoga Club has 10 or more members.
This means that together the two clubs have a. ? members.
This contradicts the given information that b. ?
The temporary assumption is false. Therefore, it is true that c. ?.
C 15. Developing Proof Fill in the blanks to prove the following statement.
In a given triangle, $\triangle L M N$, there is at most one right angle.
Given: $\triangle L M N$
Prove: $\triangle L M N$ has at most one right angle.
Proof: Assume temporarily that $\triangle L M N$ has more than one a. ?. That is, assume that both $\angle M$ and $\angle N$ are b. ?. If $\angle M$ and $\angle N$ are both right angles, then $m \angle M=m \angle N=\mathbf{c}$. ?. By the Triangle Angle-Sum Theorem, $m \angle L+m \angle M+m \angle N=\mathbf{d}$. ?. Use substitution to write the equation $m \angle L+$ e. ? $+\mathbf{f} . \underline{?}=180$. When you solve for $m \angle L$, you find that $m \angle L=$ g. ?. This means that there is no $\triangle L M N$, which contradicts the given statement. So the temporary assumption that $\triangle L M N$ has \mathbf{h}. ? must be false. Therefore, $\triangle L M N$ has i. ? .
16. History Use indirect reasoning to eliminate all but one of the following answers. In what year was George Washington born?
(A) 1492
(B) 1732
(C) 1902
(D) 2002
17. Think About a Plan Write an indirect proof.

Proof Given: $\angle 1 \neq \angle 2$
Prove: $\ell \nmid p$

- What assumption should be the first step of your proof?

- In the figure, what type of angle pair do $\angle 1$ and $\angle 2$ form?

Write the first step of an indirect proof of the given statement.

18. If a number n ends in 5 , then it is not divisible by 2 .
19. If point X is on the perpendicular bisector of $\overline{A B}$, then $\overline{X B} \cong \overline{X A}$.
20. If a transversal intersects two parallel lines, then alternate exterior angles are congruent.
21. Reasoning Identify the two statements that contradict each other
I. The orthocenter of $\triangle J R K$ is on the triangle.
II. The centroid of $\triangle J R K$ is inside the triangle.
III. $\triangle J R K$ is an obtuse triangle.

Write an indirect proof.

22. Given: $\triangle A B C$ with $B C>A C$

Proof
Prove: $\angle A \not \equiv \angle B$
23. Given: $\triangle X Y Z$ is isosceles.

Proof Prove: Neither base angle is a right angle.

Writing For Exercises 24 and 25, write a convincing argument that uses indirect reasoning.
24. Chemistry Ice is forming on the sidewalk in front of Toni's house. Show that the temperature of the sidewalk surface must be $32^{\circ} \mathrm{F}$ or lower.
25. Show that an obtuse triangle cannot contain a right angle.
26. Error Analysis Your friend wants to prove indirectly that $\triangle A B C$ is equilateral. For a first step, he writes, "Assume temporarily that $\triangle A B C$ is scalene." What is wrong with your friend's statement? How can he correct himself?
27. Literature In Arthur Conan Doyle's story "The Sign of the Four," Sherlock Holmes talks to his friend Watson about how a culprit enters a room that has only four entrances: a door, a window, a chimney, and a hole in the roof.
"You will not apply my precept," he said, shaking his head. "How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth? We know that he did not come through the door, the window, or the chimney. We know that he could not have been concealed in the room, as there is no concealment possible. Whence, then, did he come?"

How did the culprit enter the room? Explain.
28. In the figure at the right, $\overleftrightarrow{R Q}$ intersects lines ℓ and Proof m to form congruent corresponding angles, and lines ℓ and m intersect at point P. Use the figure and the Triangle Angle-Sum Theorem to write an indirect proof of Theorem 3-4, the Converse of the
 Corresponding Angles Theorem.

Standardized Test Prep

31. What temporary assumption is the first step of the following indirect proof?

Given: The sides of $\triangle S F K$ measure $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm .
Prove: The orthocenter of $\triangle S F K$ is on the triangle.
(A) The incenter of $\triangle S F K$ is inside the triangle.
(B) The orthocenter of $\triangle S F K$ is inside the triangle.
(C) The centroid of $\triangle S F K$ is outside the triangle.
(D) The orthocenter of $\triangle S F K$ is inside or outside the triangle.
32. $\triangle L M N \cong \triangle O P Q, m \angle L=39$, and $m \angle P=61$. What is $m \angle Q$?
(F) 39
(G) 80
(H) 100
33. In the diagram, what are the coordinates of the circumcenter of $\triangle K M F$?
(A) $(1.5,1.5)$
(C) $(3,1.5)$
(B) $(6,0)$
(D) $(0,0)$
34. For what types of triangles are the centroid, circumcenter, incenter, and orthocenter all inside the triangle? Explain.

Mixed Review

35. The distances from the centroid of a triangle to its vertices are $16 \mathrm{~cm}, 17 \mathrm{~cm}$,

See Lesson 5-4. and 18 cm . What is the length of the shortest median?
36. The orthocenter of isosceles $\triangle A B C$ lies outside the triangle and $m \angle A=30$. What are the measures of the two other angles?
37. You think, "If I leave home at 7:10, I'll catch the $7: 25$ bus. If I catch the

See Lesson 2-4. 7:25 bus, I'll get to school before class starts. I am leaving and it's 7:10, so I'll get to school on time." Which law of deductive reasoning are you using?

Get Ready! To prepare for Lesson 5-6, do Exercises 38-40.

Graph $\triangle A B C$. List the sides in order from shortest to longest.
See Lesson 1-7.
38. $A(5,0), B(0,8), C(0,0)$
39. $A(2,4), B(-5,1), C(0,0)$
40. $A(3,0), B(4,3), C(8,0)$

